УДК 621.643--219

Γρуππа Ε26

ОТРАСЛЕВОИ СТАНДАРТ

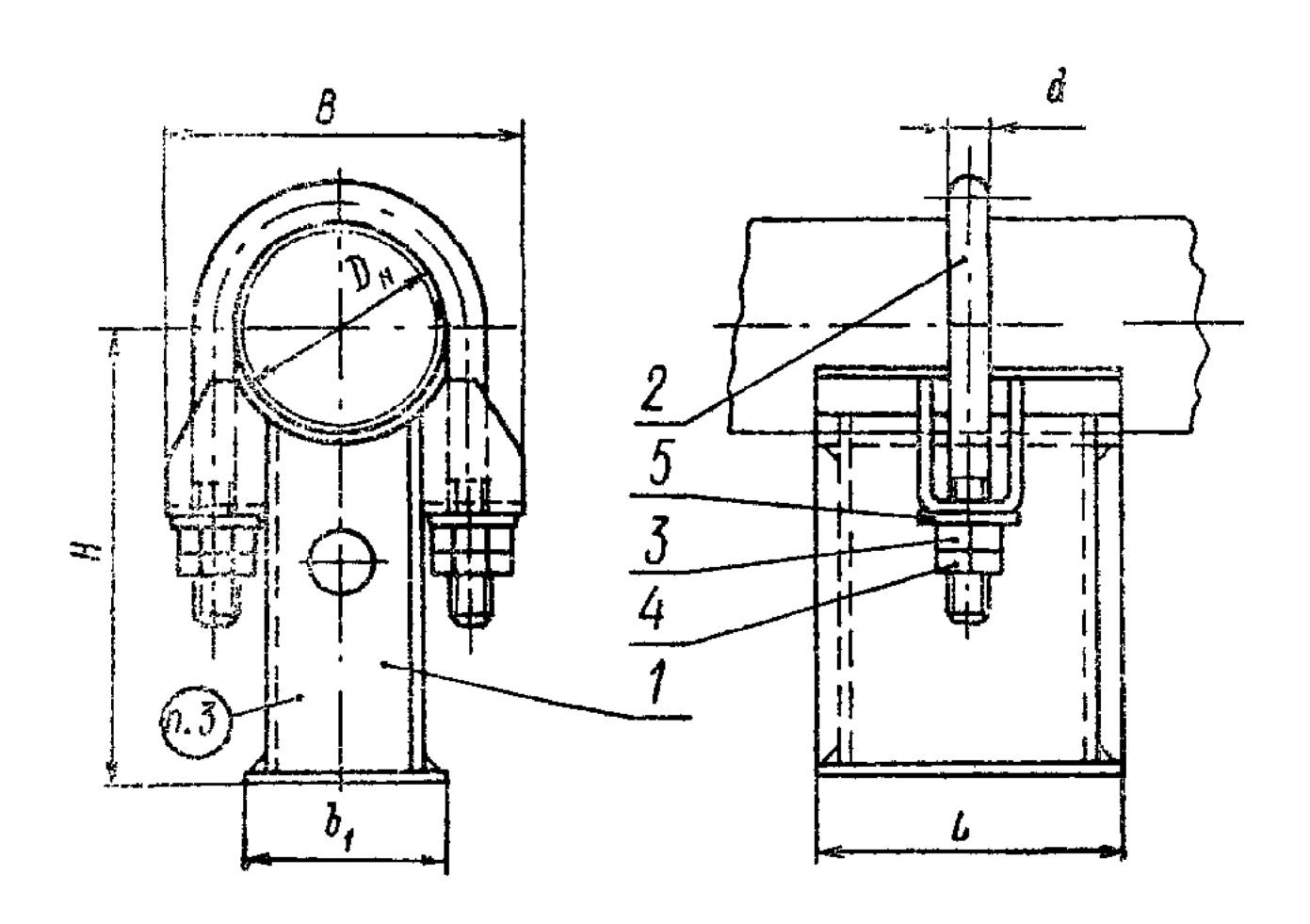
ОПОРЫ ОДНОХОМУТОВЫЕ ТРУБОПРОВОДОВ ТЭС И АЭС

OCT 108.275.37-80

Введен впервые КОНСТРУКЦИЯ И РАЗМЕРЫ

ОКП 31 1312

Указанием Министерства энергетического машиностровния 30.06.80 № ЮК-002/5261 срок введения установлен


Несоблюдение стандарта преследуется по закону

1. Настоящий стандарт распространяется на однохомутовые опоры, являющиеся составной частью неподвижных опор трубопроводов наружным диаметром 57—159 мм для ТЭС и АЭС и составной частью скользящих опор трубопроводов наружным диаметром 57—273 мм из коррозионно-стойкой стали аустенитного класса для ЛЭС.

2. Конструкция и основные размеры опор должны соответствовать указанным на чертеже и в табл. 1—5.

3. Маркировать: обозначение по стандарту, товарный знак.

4. Технические требования — по ОСТ 108.275.50—80.

I — корпус; 2 — хомут; 3 — гайка; 4 — гайка инзкая; 5 — шайба

Τασπυμα [Основные размеры однохомутовых неподвижных опор Размеры в мм

Испол- нение	Наружный днаметр трубопро-вода $D_{\rm H}$	В	b_1	d	H	L	Масса,
01 06	57	102 100, 102	60		122		1.6
02 07	76	106 116	75	12	128	90	2,0
13 08 14	89	126	85		1 3 5		1,9
03 09 15	108	108 167 100 16		16	154	155	4,5
04 10 16	133	202	125		171	175	6, 5
05 11 17 18	159	228	150	20	178	260	9,2

Таблица 2

Основные размеры однохомутовых скользящих опориз коррозионно-стойкой стали аустенитного класса

Размеры в мм

Исполне- ние	Наружный диаметр трубопро- вода $D_{\rm H}$	В	b_1	d	Н	L	Масса,
12	57	106	60		122		1.5
13	76	126	7 5	10	128	90	1,7
14	89	1-33 135	8 5	- 12	135		1,9
19	108	.157-152	100		154	80	2,6
20	133	492 i 88	125		171		3,9
21	150	224 220	150	16	170	85	AL PARTY AND ADDRESS OF THE PARTY AND ADDRESS
22	159	220	150		178		3,6
23	219	298	200	20	267	İ	9,9
24	245	324	230	O.4	272	120	12,0
25	273	35435\$	260	- 24	281-28		12,7

Основные размеры и спецификация опор трубопроводов из хромомолибденованадиевых сталей Размеры в мм

лнение	Наружный диаметр ${ m трубопровода}\ D_{ m m}$	Корпус, поз. 1 1 шт. Испол	Гайка ГОСТ 5915—70, поз. 3 Сталь 20Х1М1Ф1ТР ГОСТ 20072—74 2 шт.			Гайка ГОСТ 5916—70, поз. 4 Сталь 20Х1М1Ф1ТР ГОСТ 20072—74 2 шт.			Шайба ГОСТ 11371—78, поз. 5 Сталь 12ХМ ТУ 14—1—642—73 2 шт.						
		по ОСТ 108.275.39—80	по ОСТ 108.343.01—80	Номи- нальный диаметр резьбы	<u>Масс</u> 1 шт.		Номи- нальный диаметр резьбы	Масса 1 шт.	а, кг общая	d_1	d_2	S	Maco	а, кг	
01	57	01	01	110	0.015	0.000	1410	0.010	0.000	12.0	04.0		0.000	0.016	
02	76	02	02	M12	0,015	0,030	M12	0,010	0,020	13,0 	24,0 	3	0,005	0,016	
03	108	0.3	04	M16	0,033	0,066	M16	0,019	0,038	17,0	30,0		0,011	0,022	
04	133	04	06	1400	0.000	0 104	1.00	0 004	0.000	01.0	07.0		0.000		
05	159	05	08	M20	0,062	U, 124	M20	U, U34 	0,008	21,0 	3 <i>f</i> ,0 	4	0,022 0,044		

Примечание. Допускается шайбы для резьбы М12, М16 изготавливать из стали 12Х1МФ

Гиблици 4 Основные размеры и спецификация опор трубопроводов из углеродистой и кремнемарганцовистых сталеи Размеры в мм

лнение	Наружный днаметр трубопровода D_n	Корпус, по в ј шт Испол	Хомут, поз 2 1 шт нение	TOCT TOCT	Гайка ГОСТ 5915—70, поз 3 Сталь 35 ГОСТ 1050—74 2 шт. Гайка ГОСТ 5916—70, поз 4 Сталь 35 ГОСТ 1050—74 2 шт.						Пайба ГОСТ 11371—78, поэ 5 ВСтЗ ГОСТ 380—71 2 шт				
		по ОСТ 108 275 39—80	no OCT 108 343.01—80	Номи- нальный днаметр резьбы	Macc 1 III1		Номи- нальный днаметр резьбы	Macc 1 mr.	а, кг общая	d_1	d,	s	Macca	06mus 5	
06	57	06	27												
0.7	76	07	28	M12	0,015	0,030	M12	0,010	0,020	13,0	24,0		0,008	0,016	
90	89	08	29									3			
09	108	09	31	M16	0,033	0,066	A116	0,019	0,038	17,0	30,0	U.	0,011	0,022	
10	133	10	33	14.10	ന ഗദര	0 104	λ <i>κ</i> Ω Ω	0 024	0 060	21 0	27 ()		0.017	U US 1	
11	159	11	35	M20	0,062	0,124	124 M20	0,034	0,068	21,0	ο <i>ι</i> ,0		7,017	1 CU, U	

Taganstate Основные размеры и спецификации опор трубопроводов из коррознониф-стойкой стали аустепитного класса Размеры в мм

eme	диаметр да Дя,	Корпус, поз / 1 шт Неполи	Гайка ГОСТ 591570, поз 3 Сталь 35 ГОСТ 1050—74 2 шт.			I OCT II Cr CoCT	Пайба 1 ОС1 11371—78, поз 5 ВСт3 ГОСТ 380—71 2 шт							
	KHENT ORDOBO			Номи- Масса, кг		2 шт Номи- Масса, кг						Mace	ea, Kr	
	Наружи трубопр	по ОСТ 108 275.39—80	no OCT 108 343 01—80	пальный диаметр 1 резьбы	1 шг.	оо́щая	нальный диаметр резьбы	1 шт.	общая	d_1	d_2	,	l mr	оСщая
12	57	12	54	 	2 0,015	0,03	M12		0,020					
13	76	13	55	W12				0.010		13 0	91.0		0.008	0,016
14	89	14	56				17112	0,010	0,020	10,0	24,0		0,000	0,010
19 15	108	31	57				<u> </u>		<u> </u>	<u> </u>				
15	100	15	58	M 16	0 033	0,066	M 16	0,019	0.038	117 0	30.0	ļ	0.011	0,022
20	133	32	59	1110	0,000	0,000	11110	0,013	0,000	117,0	00,0	3	0,011	,0,0
16	130	16	60	M20	0,062	0,124	M20	0,034	0,068	21,0	37,0	"	0,017	0,034
21		33	61	M16	0 022	0,066	M16	0,019	0 038	17 0	30 0		0.011	0,022
12	159		63	7410	0,000	0,000	14110	0,013	0,000	17,0	100,0		0,011	0,022
17	103	17	62			}]			<u> </u>			
18		17	64	M20	0,062	0,124	M20	0,034	0,068	21,0	37 , 0		0,017	0,034
23	219	34	65						<u> </u>					
24	245	35	67	M24	0 103	0,214	M24	0,055	0 110	25 1			0 039	0.001
25	273	36	68	14174	0,107	0,214	14177	0,000	0,110	120,0 	,0	1 7	0,002	0,001

Пример условного обозначения однохомутовой опоры исполнения 20 для трубопровода наруж-ным днаметром 133 мм из коррозпонно-стойкой стали аустенитного класса